Биомеханика перестройки костных тканей при перемещении зубов

Как происходит перестройка костной ткани при перемещении зубов

Перемещение зубов – это сложный биомеханический процесс, сопровождающийся перестройкой альвеолярного отростка.

Впервые о его возможности заявил французский стоматолог Пьер Фошар в начале 18-го века. С тех пор были проведены многочисленные исследования, и в настоящее время процесс перестройки костных тканей челюстного аппарата при перемещении зубов достаточно изучен.

Содержание статьи:

Механизм происходящих процессов

Человек сталкивается с двумя видами смещения зубов – физиологическим и ортодонтическим (лечебным).

Физиологическая миграция является следствием выполнения основной функции – жевания. Зубы одного ряда контактируют между собой по апроксимальным поверхностям. Из-за амортизации периодонта во время жевания апроксимальные поверхности истираются, что должно, по идее, приводить к возникновению между ними зазора. Однако этого не происходит из-за апроксимального дрейфа.

Зубы разных челюстей контактируют по окклюзионным поверхностям со своими антагонистами. Вследствие истирания жевательной или режущей поверхности, возникает окклюзионное (вертикальное) смещение.

Апроксимальный дрейф

При истирании боковых поверхностей они становятся менее выпуклыми, однако зубы не теряют контакта друг с другом из-за одновременного истончения альвеолярных перегородок и приближения их друг к другу.

Это явление называется апроксимальным дрейфом. Окклюзионная нагрузка, под действием которой зуб мигрирует в горизонтальном направлении, направлена вперед. Поэтому апроксимальный дрейф всегда принимает форму мезиальной миграции (зуб движется к центру дуги), и никогда – дистальной.

Очевидно, что мезиальный дрейф не был бы возможен, если бы костная ткань альвеолярных лунок не перестраивалась, делая такую миграцию возможной.

Суть перестройки состоит в том, что на медиальной стороне зуба периодонт после начала истирания апроксимальных поверхностей вначале сужается, а потом, благодаря образованию новой костной ткани, увеличивается.

На дистальной стороне происходит обратный процесс – периодонтальная связка сначала расширяется, а потом из-за образования слоя новой кости – сужается.

Справка. Резорбция и генерирование новой костной ткани – это различные стороны одного и того же процесса – костного метаболизма. В этих процессах принимают участие различные клетки, локализованные в периодонте.

Основную работу выполняют остеокласты и остеобласты. Первые активируют рассасывание костной ткани, в функцию вторых входит образование молодых костных клеток.

Таким образом, в процессе эксплуатации зубов костная ткань альвеолярных лунок рассасывается с медиальной стороны и генерируется с дистальной. В результате этого зубы постепенно сдвигаются вперед по альвеолярному отростку. При этом толщина периодонтальной щели практически не изменяется.

Окклюзионный дрейф

Постепенное физиологическое истирание окклюзионных поверхностей зубов приводит к их выдвижению из альвеолярного отростка. Такая миграция называется окклюзионным дрейфом.

Она вызывается отложением цемента в апексе корня и перестройкой стенок альвеолярных лунок на всей их высоте. Окклюзионный дрейф становится особенно интенсивным при потере зубов антагонистов.

Чем занимается ортодонт, и с какого возраста нужно к нему обращаться.

Заходите сюда, если интересуют показания к ортодонтическому вытяжению зуба.

Ортодонтическое смещение

Ортодонтическое смещение – это принудительное перемещение зубов с целью нормализации их положения. Природа ортодонтического лечения заключается в том, что под действием механического усилия в периодонте активизируются остеокласты и остеобласты.

Результатом их активности становится рассасывание стенки альвеолярной лунки в области сжатия и разрастание твердых тканей в области растяжения.

На той стороне, где периодонт сдавливается, внутренняя стенка альвеолы рассасывается, наружная – наращивается за счет образования твердых тканей. На стороне растяжения периодонтальная щель изначально увеличивается из-за растяжения периодонта, однако потом, при отложении на внутренней стороне альвеолы молодой кости, принимает прежние размеры.

Таким образом, перемещение единицы при ортодонтической коррекции происходит, благодаря перестройке твердой ткани зубочелюстного аппарата (чаще всего альвеолы) под действием механического усилия, создаваемого ортодонтическим аппаратом.

Кстати сказать, жевательная нагрузка также вызывает перестройку альвеолярной кости, но она, во-первых, незначительна, а во-вторых, не имеет определенного направления, как при ортодонтическом лечении.

Скорость перемещения зубов зависит от интенсивности перестройки альвеолярной лунки, а та, в свою очередь, от прилагаемого усилия, структуры и состава кости.

Губчатая ткань, содержащая тонкие трабекулы и большое количество остеобластов и остеокластов (что свойственно детской кости) способствует быстрому перемещению. В компактной кортикальной кости перестройка происходит медленно.

Таким образом, зубы человека находятся в постоянной, незначительной физиологической миграции. С возрастом они смещаются вперед и выдвигаются из альвеолярного гребня. При ортодонтическом лечении перемещение идет довольно быстро – около 1 мм в месяц, иногда быстрее.

Биологическая функция периодонта

Периодонт или периодонтальная связка – это тонкий слой ткани, окружающей зуб со всех сторон и располагающейся между его цементом и костью альвеолярной лунки. Толщина периодонта составляет 0,20-0,25 мм. Наиболее важную роль при жевании играют коллагеновые волокна, на которые приходится около 60% объема всего периодонта.

Периодонтальная связка выполняет несколько функций. Основная из них – распределительно-регулирующее действие (восприятие жевательной нагрузки, приложенной к зубу, и равномерное распределение ее на кость альвеолы).

Кроме этого, периодонт выполняет:

  • механостатическую функцию (удерживает зуб в альвеоле);
  • защитную (обеспечивает гомеостаз своих и окружающих тканей);
  • трофическую (через него осуществляется питание зуба);
  • пластическо-репаративную (обеспечивает обновление дентина и эмали);
  • сенсорную (реакция тканей периодонта в ответ на восприятие рецепторами механических раздражений).

Жевательная нагрузка на зуб может быть вертикальной (осевой) и горизонтальной. Первая наиболее физиологична, периодонт справляется с ней относительно легко, чего нельзя сказать о горизонтальной нагрузке.

В большинстве случаев при изменении жевательных нагрузок периодонт адаптируется к новым условиям без негативных для себя последствий. Однако если жевательная нагрузка превышает определенное значение в течение длительного времени, или приложена неправильно вследствие зубных аномалий, индивидуальная выносливость пародонта может быть превышена, что чревато патологическими изменениями в его тканях.

Важна не столько величина нагрузки, сколько ее направление и продолжительность действия. Осевая ритмическая, с короткими фазами жевания нагрузка не нарушает предел выносливости пародонта даже при высоких значениях.

В то время как горизонтальная, длительно действующая, особенно в сочетании с парафункциями, сказывается на состоянии пародонта крайне негативно, приводит к ретракции, утолщению или щелеобразному расхождению десен.

Состояние периодонта могут усугублять общие заболевания, аномальное расположение и наклон зубов, частичная адентия, нежелательные контакты из-за выступающих пломб или коронок. В частности, при нагрузке элементов, аномально наклоненных вперед из-за протрузии, изменения в периодонте могут возрастать в 20 раз.

Большое значение имеет и место приложения усилия к коронке элемента. Если соотношение высоты коронки и длины внутриальвеолярной части нарушено, возникает неблагоприятное для периодонта рычагообразное действие.

Основания к дистализации моляров и используемые аппараты.

В этой публикации поговорим о лечении кариеса при брекетах.

Взаимосвязь используемых сил и морфологических изменений

При определении оптимальной силы воздействия ортодонтического аппарата за базовый ориентир принимается давление, при котором в тканях периодонта прекращается капиллярное кровообращение.

В зависимости от величины, прилагаемой к зубу силы, различают 4 степени изменений периодонта:

  • 1-я степень. Имеет место при использовании малой силы – 15-20 г/см 2 . Кровообращение не нарушается, процесс рассасывания и образования твердых тканей альвеолярной лунки уравновешен, зуб сохраняет устойчивость.
  • 2-ая степень. Давление составляет 20-25 г/см 2 . Периодонт в некоторых участках сдавливается с нарушением кровообращения, однако, благодаря тому, что в соседних участках оно не нарушено, перестройка кости происходит нормально, без морфологических и функциональных нарушений.
  • 3-я степень. Наблюдается при повышении давления свыше 26/см 2 . Кровообращение нарушается на больших участках периодонта. Это приводит к небольшой частичной резорбции корня зуба, которая хоть и создает морфологический дефект, но не сказывается на его функциональности.
  • 4-ая степень. Наступает при еще более высоком давлении. Характеризуется резорбцией не только кости альвеолярной лунки, но и твердых тканей зуба.

Рассасывание последних проявляется в виде лакун (впадин) в дентине. При зарастании последних костью происходит сращивание (анкилоз) корня с альвеолой.

Неблагоприятным последствием анкилоза является снижение или полное прекращение амортизации зуба. То есть периодонт перестает выполнять главную свою функцию – амортизацию и равномерное распределение нагрузки, что приводит к нарушению его функциональности.

Оптимальными ортодонтическими силами считаются такие, которые обеспечивают вторую и третью степень морфологических изменений. В этом случае коррекция проходит максимально быстро при сохранении функциональности зубов.

При этом силы, обеспечивающие вторую степень перестройки, должны быть постоянными, обеспечивающие третью степень – перемежающимися.

Прилагаемая к зубу сила должна иметь постоянное направление. Его периодическое изменение плохо влияет на перестройку альвеолярного отростка.

Чтобы альвеолярная лунка начала перестраиваться, нагрузка должна действовать не меньше 6-7 часов в сутки и восстанавливаться за счет активации каждые 3-4 недели.

Преобразования при расширении верхней челюсти

Сужение челюстей (чаще верхней) – довольно распространенная аномалия, приводящая к перекрестному прикусу и скучиванию фронтальных зубов.

Расширение ВЧ в детском и подростковом возрасте (при несросшемся срединном небном шве) – вполне прогнозируемая и успешно решаемая задача. У взрослых с закостеневшим швом – этот более трудная проблема, требующая иногда хирургического вмешательства.

Расширение челюстей зиждется на трех принципах:

    Использование дополнительно к кольцам на опорные зубы лингвальной дуги-балки, которая передает усилие на весь боковой ряд вплоть до клыков.

В некоторых аппаратах для верхней челюсти балка заменяется акриловой пластиной. И балка, и пластина передают давление в пришеечной области, способствуя корпусному перемещению зубов, а не их наклону.

  • Создание из боковых зубов монолитного блока. Исключает перемещение отдельных единиц.
  • Передача расширяющего усилия не только на зубной ряд, но и нёбный свод. Этот принцип используется в основном в аппаратах для детей с целью снижения нагрузки на молочные зубы.
  • Верхняя челюсть имеет срединный шов, по которому и происходит расширение. Это особенность значительно упрощает задачу, в частности, у детей и подростков, у которых шов не облитерирован. Расширение челюсти происходит за счет увеличения ширины шва.

    У взрослых происходит разрыв небного шва с последующим расширением и зарастанием образовавшейся щели новой костью. Если аппаратный способ расширения у взрослого пациента не приводит к успеху, прибегают к хирургическому вмешательству.

    Наилучшего результата достигают, когда расширение осуществляют медленно, небольшими силами. В этом случае образующаяся новая кость шва имеет правильную, равномерную структуру. Быстрое расширение может приводить к неравномерной структуре вновь образующейся в шве костной ткани.

    Нижняя челюсть в отличие от верхней не имеет шва, ее половины являются полностью сросшимися. Поэтому расширение НЧ представляет, по сути, вестибулярный наклон зубных рядов без расширения челюстной кости.

    В видео смотрите процесс скелетного расширения верхней челюсти.

    Изменения ВНЧС при коррекции НЧ

    Механизм изменений в ВНЧС не отличается от такового в зубоальвеолярном отростке. В области давления имеет место резорбция, в области расширения – образование новой ткани.

    В частности, при перемещении НЧ межчелюстной резиновой тягой вперед, происходит рассасывание тканей в области передней поверхности головки сустава и контактирующей с ней поверхности бугорка.

    В задней части (в зоне растяжения) происходит новообразование кости. В результате происходит перемещение суставной впадины вперед.

    Отличием коррекции ВНЧС от альвеолярного отростка является необходимость более длительной ретенции. Если время закрепления результата лечения недостаточно, суставная впадина быстро возвращается в первоначальное положение.

    Другая особенность перестройки височно-нижнечелюстных суставов – ее тесная взаимосвязь с перестройкой функции мышц зубочелюстного аппарата, особенно латеральных крыловидных (pterygoideus lateralis), которые обеспечивают движение нижней челюсти в сторону и вперед.

    Как и весь зубочелюстной аппарат, височно-нижнечелюстной сустав легче корректируется у детей и подростков, и гораздо труднее – у взрослых.

    Выводы

    Сложность и противоречивость изменений структуры и морфологии тканей альвеолярного отростка при перемещении зубов в процессе ортодонтического лечения требует от врача правильного составления плана лечения и точного выбора ортодонтического аппарата.

    Особое внимание должно придаваться определению места приложения, направления, величины и продолжительности действия корректирующей силы.

    Большое значение имеет возраст пациента, структура костных тканей его зубочелюстного аппарата, место коррекции (верхняя или нижняя челюсть).

    Прогнозируемый и успешный результат лечения возможен только при правильном учете всех особенностей клинической картины.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Особенности перестройки костной ткани альвеолярного отростка при перемещении зуба

    В основе перемещения зубов лежит перестройка костной ткани альвеолярного отростка при приложении к зубу нагрузки определенной величины и длительности действия.

    Альвеолярная кость претерпевает морфологическую и гистологическую трансформацию как от физиологических (жевательных) нагрузок, так и создаваемых ортодонтическими устройствами.

    Содержание статьи:

    Механизм происходящих процессов

    Перестройка костной ткани под действием нагрузки состоит в двух разнонаправленных процессах – резорбции (рассасывании) старой и образования новой кости.

    За эти процессы отвечают специальные костные клетки – остеокласты и остеобласты. Первые обеспечивают резорбцию кости, вторые – регенерацию.

    Рассасывание происходит в костных участках, находящихся под сжатием, образование новой кости – в местах растяжения. В результате зуб мигрирует в сторону зоны компрессии, то есть в том направлении, в котором прилагается сила.

    Физиологическая миграция происходит медленно и незаметно в течение всей жизни человека, и является естественным приспособлением костного органа к изменению условий его эксплуатации. Различают два основных вида естественной миграции (дрейфа) зубов – апроксимальный и окклюзионный.

    Перестройка альвеолярной кости под действием ортодонтических нагрузок происходит относительно быстро, в течение нескольких месяцев или лет. Виды принудительного перемещения отдельных зубов и сегментов разнообразны и обуславливаются клинической картиной.

    Апроксимальный дрейф

    Несмотря на кажущуюся неподвижность, при жевании соседние элементы смещаются друг относительно друга на сотые доли миллиметра. Это происходит благодаря амортизационным свойствам периодонта – тонкого слоя тканей, окружающих ту часть зуба, которая погружена в десну.

    Периодонт в значительном объеме состоит из коллагеновых волокон, которые воспринимают жевательную нагрузку, смягчают ее благодаря амортизации и равномерно распределяют на стенки альвеолярной лунки.

    При взаимном смещении происходит постепенное истирание их апроксимальных (боковых) поверхностей в зоне контакта. Но соприкосновение между ними не исчезает благодаря перестройке кости альвеолярных стенок и незаметному движению всех зубов мезиально, вперед по альвеолярному гребню.

    Перемещающую силу в данном случае создает горизонтальная составляющая жевательной нагрузки, которая всегда направлена вперед.

    Перестройки костных стенок альвеолы при апроксимальном дрейфе происходит по обычному механизму. Горизонтальная жевательная нагрузка создает компрессию в мезиальной области альвеолярной лунки и периодонте, что приводит к частичной резорбции костной стенки.

    В то же время в дистальной зоне, подвергающейся растяжению, происходит наращивание костной ткани. В результате элемент смещается вперед.

    Окклюзионный дрейф

    Одновременно с апроксимальной миграцией, зубы подвергаются окклюзионному дрейфу – незаметному выдвижению вверх (нижнечелюстные) и вниз (верхнечелюстные). Причиной этой физиологической миграции является истирание по окклюзионным поверхностям, приводящее к снижению вертикальной нагрузки.

    Если бы окклюзионный дрейф отсутствовал, зубы со временем потеряли бы контакт со своими антагонистами. Чтобы компенсировать окклюзионное истирание, они вынуждены выдвигаться из альвеолярных лунок. Это происходит за счет отложения цемента в апикальной области корней и перестройки костной ткани по всей высоте альвеолярных стенок.

    Ортодонтическое смещение

    Ортодонтическое смещение представляет собой перемещение проблемных единиц специальными аппаратами с целью исправления их аномального положения. То есть по своей сути это процесс лечения аномалии.

    Ортодонтическое перемещение происходит относительно быстро, со средней скоростью около 1 мм в месяц. Оно вызывается приложением к зубу определенной по величине, направлению и времени действия силы.

    О том, что зубы могут перемещаться по действием приложенной к ним силы, стало известно еще в 18 веке. Однако механизм перемещения был окончательно установлен только в первой половине двадцатого столетия.

    Была определена и роль в этом процессе остеобластов и остеокластов. Результатом приложения нагрузки является смещение альвеолярной лунки вместе с проблемной единицей в сторону приложения силы. Толщина периодонта при этом изменяется незначительно.

    Чтобы альвеолярная кость начала перестраиваться и зуб смещаться, нагрузка должна отвечать следующим условиям:

      Достигать определенной величины. Базовым параметром, по отношению к которому рассматривается величина перемещающих сил, является давление, при котором прекращается микроциркуляция крови в пародонте.

    Многочисленные опыты показали, что сила давления, которая вызывает перемещение зуба и одновременно не нарушает микроциркуляцию крови составляет 15-20 г/см 2 .

    Однако при определенных условиях давление коррекции может превышать это значение, не приводя к серьезным негативным последствиям для единицы и окружающих ее тканей. Повышая давление свыше 20 г/см 2 , можно ускорить процесс лечения.

  • Длиться определенное время (не менее 6-7 часов в сутки).
  • Иметь постоянное направление.
  • По своему характеру перемещение зуба может быть следующих видов:

    • Корпусным. Перемещение коронки и корня происходит на одно и то же расстояние. Согласно исследованиям Райтена для корпусного перемещения однокорневого зуба требуется усилие 70-90 г, для многокорневого – 150 г.
    • Наклонно-вращательным. Совмещение поступательного и вращательного движения. Требует 50-70 г для перемещения резцов, 150 г – для жевательных единиц.
    • Ротационным. Вращение вокруг продольной оси.
    • Вертикальным. Зубоальвеолярное удлинение или укорочение (экструзия и интрузия). Первое требует усилия 25 г, второе – 50 г. Хотя в отношении величин сил при вертикальном перемещении существует различие мнений.

    Ортодонтические аппараты создают два вида сил – постоянные и перемежающиеся. Первые относительно постоянны по своей величине, хотя в действительности постепенно ослабевают из-за потери силовыми элементами своей первоначальной упругости. Такого вида силы создают брекетные дуги, эластичные тяги, пружины.

    Перемежающаяся сила характеризуется большим значением в начале и быстрым уменьшением из-за смещения элемента. Механизмы, создающие перемежающую силу, требуют частой активации. К ним относятся винты, проволочные лигатуры, брекетные замочки с функцией активного лигирования.

    На быстроту перестройки костей и скорость перемещения зубов влияют не только параметры прилагаемой силы, но и состав костной ткани.

    Детская кость, содержащая много остеобластов и остеокластов и находящаяся в стадии формирования, перестраивается легко и быстро.

    Коррекция аномалий у взрослых, имеющих полностью сформировавшиеся костные ткани, проходит значительно труднее и медленнее. Однако перестройка кости альвеолярного отростка, хотя и с разной интенсивностью, происходит в любом возрасте.

    Снятие оттисков методом открытой и закрытой ложки, тактика проведения процедуры.

    Заходите сюда, если интересует как проверить прикус зубов.

    Биологическая функция периодонта

    Толщина периодонта незначительна – всего 0,20-0,25 мм. Однако он выполняет функции, которые чрезвычайно важны для состояния и правильной работы зуба:

    • Удерживает единицу в альвеолярной лунке.
    • Воспринимает и равномерно распределяет жевательную нагрузку на стенки альвеолы.

    Эластичные коллагеновые волокна, прикрепленные одним концом к цементу зуба, другим – к стенке альвеолярной лунки, смягчают жевательную нагрузку, равномерно распределяют ее по всей альвеоле, не допускают перегрузки костных тканей и периодонта.

  • Обеспечивает питание и обновление зуба.
  • Защищает его ткани от патогенных микроорганизмов, реализуя иммунную реакцию организма в ответ на инфицирование.
  • Благодаря наличию механических рецепторов обеспечивает сенсорную адаптацию к нагрузке.
  • Все функции периодонта важны, но для ортодонтии наибольшую важность представляет распределительно-регулирующая – восприятие нагрузки и передача ее на ткани альвеолярного отростка.

    Жевательная нагрузка состоит из вертикальной и горизонтальной составляющих. Связочный аппарат – периодонт и альвеолярная лунка – хорошо адаптирован к вертикальной нагрузке, легко переносит ее, даже если она на короткое время значительно превышает усилие, на которое рассчитан периодонт.

    И только при длительно действующей аномально высокой нагрузке предел выносливости периодонта может быть превышен, и в нем начаться негативные изменения, приводящие к разрушению связки и шаткости зуба.

    Постоянная горизонтальная нагрузка, особенно осложненная парафункциями, значительно опасней вертикальной. Она приводит к ретракции (опусканию) десны, оголению шейки зуба, ее сужению.

    Опасны для состояния связочного аппарата и аномалии. Они способны создать нагрузку на периодонт, во много раз превышающую нормальную или изменить ее характер ― из безопасной вертикальной сделать работающей по принципу рычага.

    Современные методы диагностики зубочелюстных аномалий в ортодонтии и их информативность.

    В этой публикации обсудим тактику коррекции смещения средней линии зубов.

    Взаимосвязь используемых сил и морфологических изменений

    Итак, усилие, создаваемое ортодонтическим аппаратом, приводит к перестройке альвеолярного отростка. Различают 4 степени изменений в зависимости от величины прилагаемых сил:

    • I степень. Нарушение кровообращения в периодонте отсутствует, рассасывание и образование костной ткани альвеолы сбалансировано, устойчивость единицы не нарушена. Эта степень соответствует прилагаемому давлению 15-20 г/см 2 .
    • II степень. В некоторых областях периодонта кровообращение нарушается из-за того, что компрессия превышает давление крови в сосудах.

    Однако эти области незначительны, и компенсируются нормальным кровообращением в соседних областях, из-за чего перестройка костной ткани проходит нормально, и связка зуба не подвергается функциональным изменениям. Вторая степень вызывается давлением 20-26 г/см 2 .
    III степень. Микроциркуляция крови нарушается в значительных областях периодонта, что приводит к остаточным морфологическим дефектам в виде незначительного рассасывания корня.

    Несмотря на это, функциональность зуба практически не нарушается. Такая степень изменений может происходить при умеренном превышении давления выше 26 г/см 2 .
    IV степень. Характеризуется масштабным нарушением циркуляции крови в периодонте, некрозом тканей в зоне компрессии, лакунарным (в виде углублений) рассасыванием корней, срастанием (анкилозом) их с костью альвеолы.

    Из-за потери амортизационных свойств периодонта значительно нарушается функциональность зуба. Такие изменения происходят при усилиях, надолго останавливающих микроциркуляцию крови в периодонте.

    По результатам практики рекомендуется использовать постоянные усилия, вызывающие 2-ю степень изменений, или перемежающиеся силы, приводящие к 3-ей степени трансформации.

    Последнее объясняется тем, что перемежающиеся силы в своем максимальном значении действуют короткое время, и неспособны привести к негативным последствиям в периодонте и тканях альвеолы.

    Преобразования при расширении верхней челюсти

    Верхняя челюсть человека имеет срединный шов, который полностью срастается только после 20-25-ти лет.

    Для расширения челюсти используют ортодонтические аппараты, представляющие собой пластину, состоящую из двух половинок и винта, который их раздвигает. Половинки упираются в боковые зубы или, в дополнение к ним, еще и в альвеолярный гребень.

    Это зависит от конструкции аппарата. Расширение аппарата и, соответственно, челюсти, происходит при вращении (активации) винта.

    Коррекция суженных челюстей у детей и подростков с несросшимся срединным нёбным швом проходит без особых проблем. Челюсть расширяется за счет увеличения зазора в срединном шве.

    Достигнув нужного расширения, активацию винта прекращают, и аппарат носится в качестве ретенционного еще не менее полугода. За это время срединный шов зарастает костной тканью, фиксируя достигнутое расширение.

    У взрослых с окостеневшим швом расширение проходит труднее, поскольку вначале требуется разорвать шов. Иногда возникает необходимость в хирургическом вмешательстве.

    После разрыва шва расширение происходит по той же схеме, что и у детей, с помощью периодической активации винта. В процессе лечения и ретенции образовавшийся зазор в срединном шве постепенно зарастает новой костной тканью.

    В видео смотрите процесс скелетного расширения верхней челюсти.

    Трансформация ВНЧС при коррекции НЧ

    Особенность перестройки ВНЧС при ортодонтическом лечении состоит в необходимости более длительной ретенции, чем при смещении зубов. Это объясняется особой структурой твердых и мягких тканей височно-нижнечелюстного сустава.

    Сам механизм перестройки тканей не отличается от трансформаций в зубоальвеолярном отростке. Усилие коррекции прикладывают к нижней челюсти. В частности, для перемещения ее вперед используют эластичную тягу.

    При этом в области сжатия (передняя поверхность мыщелка и контактирующая с ней поверхность сустава) происходит рассасывание костной ткани, а в зоне растяжения (задняя часть сустава) – образование молодой кости. Таким образом, суставная впадина смещается вперед, что приводит к выдвижению нижней челюсти.

    Выводы

    При коррекции зубочелюстных аномалий должна быть точно определена необходимая величина корректирующей силы, ее характер (постоянная или перемежающаяся), место приложения, продолжительность действия.

    Но только этим ограничиваться нельзя. На скорость и качество перестройки костной ткани влияют не только параметры создаваемой аппаратом силы.

    Большое значение имеет возраст пациентов, структура его костной ткани, состояние пародонта, наличие или отсутствие системных болезней, могущих влиять на остеогенез.

    Все это должно учитываться при составлении плана лечения и выборе ортодонтического аппарата.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Биомеханика перестройки костных тканей при перемещении зубов

    Оппенгейм, Орбан, Готлиб, Шварц показали, что в ответ на давление и натяжение вся структура кости перестраивается. На стороне давления происходит рассасывание кости и наслоение новой.
    В области натяжения развивается наслоение на стороне, обращенной к смещаемому зубу, и рассасывание — на стороне, обращенной к десне.

    Оппенгейм в течение ряда лет изучал влияние ортодонтической аппаратуры на пародонт смещаемых зубов экспериментально на обезьянах и собаках. На основе исследований им дано описание типичной гистологической картины изменений в пародонте смещаемых зубов.

    В апикальной части лунки нормальное строение кости. Периодонт на губной стороне по всей длине периодонтальной щели сдавлен примерно на одну треть его толщины. Сосуды видны только в апикальной части, ткань периодонта вполне жизнеспособна.

    На язычной стороне, то есть стороне натяжения, Оппенгейм наблюдал другую картину: костные балочки направлены перпендикулярно к поверхности корня, остеобласты имеются в большом количестве. Со стороны десны этой же стенки отмечено наличие остеокластов. Периодонтальные волокна натянуты, щель расширена.

    При перемещении зуба в вертикальном направлений изменения отмечены на дне лунки: костные балочки имеют направление в сторону приложенной силы, выявляются остеобласты. То же наблюдается и у пришеечной части лунки.

    Исследования Оппенгейма показали, что изменения, сопутствующие перемещению зубов, должны рассматриваться как биологическая реакция тканей на раздражение. Процессы перестройки кости протекают более благоприятно при медленном перемещении зубов.

    Д. А. Калвелис в процессе изучения биоморфологических явлений при ортодонтическом лечении установил, что «в представлении Оппенгейма по вопросу о тканевых изменениях имеются некоторые неточности и новообразование кости на стороне давления, о чем пишет Оппенгейм, нельзя считать характерным явлением. Констатированная кость является компенсаторной тканью на наружной стенке альвеолы, вместо резорбированной стенки альвеолы.

    Также неправильно представление Оппенгейма о тканевых изменениях на стороне тяги, где, по его мнению, сначала происходит рассасывание кости (наличие остеокластов) и только позднее новообразования (наличие остеобластов)».

    Готлиб и Орбан занимались изучением изменений в пародонте, используя жевательное давление; при этом они интересовались значением возраста для восстановительных процессов в пародонте. Опыты проводились на обезьянах и на собаках. Применялась различная аппаратура—эластические дуги, накусочные пластинки, наклонные плоскости и пр.

    В результате опытов авторы установили, что реактивная способность периодонта — степень его сопротивляемости зависит от индивидуальных особенностей и от возраста испытуемого.

    Гистологические исследования препаратов в области перемещаемых зубов показали, что:
    а) через два дня после применения ортодонтического аппарата, на стороне давления в костной стенке альвеолы происходит процесс резорбции,

    б) при исследовании кости альвеолы, зуба и периодонта через 6 дней после начала ношении ортодонтической аппаратуры, кроме резорбции костной ткани лунки, отмечена и резорбция цемента корня, но она значительно менее выражена, чем в костной ткани лунки. У молодых животных сопротивляемость цемента процессам резорбции больше, чем у старых, и интенсивность процессов резорбции тем больше, чем большая применялась сила. По прекращении давления на зуб, в резорбционных лакунах откладывается вторичный цемент и наступают полное восстановление формы и функции.

    Влияние размера силы действующего аппарата на течение биологического процесса в пародонте было установлено опытами Шварца. Опыты были поставлены таким образом, что сила давления аппарата на зубы заранее дозировалась. В опыте применялась сила давления 3 -15 г, 17—20 г и 65 г.

    Теории перестройки костной ткани

    В результате воздействия на зубочелюстную систему силы ортодонтического аппарата изменяется ее анатомическое строение. При этом возникают силы, которые стремятся восстановить ее первоначальную форму. Они называются силами упругости.

    В процессе ортодонтического лечения развиваемая аппаратами сила вызывает определенные тканевые изменения. Таким образом, ортодонтические аппараты являются специфическим раздражителем или стимулятором, вызывающим тканевую перестройку и закрепляющим измененную форму элементов зубочелюстной системы и их взаимоотношения.

    Тканевые преобразования, возникающие как ответная реакция организма, являются биологическими проявлениями жизнедеятельности организма. Таким образом, сталкиваются два разных явления: действие ортодонтического аппарата в виде механической силы и ответная биологическая реакция в форме тканевой перестройки.

    Законы механики применимы к ортодонтическому перемещению в особых условиях взаимодействия механизмов с живыми тканями – с учетом их ответной биологической реакции. Поэтому действие ортодонтических аппаратов принято называть биомеханическим.

    На протяжении развития ортодонтии, как науки, формировались и взгляды ученых на тканевые преобразования, возникающие при перемещении зубов.
    По вопросу о влиянии ортодонтической аппаратуры на перестройку тканей пародонта известны несколько основных теорий (рис. 57).

    Теория Флюренса заключается в том, что в зависимости от давления или тяги, прилагаемых к зубу, вызываются двоякого рода структурные изменения в альвеоле: аппозиция и резорбция костной ткани.

    При перемещении зуба, например, из вестибулярного в оральное направление, альвеолу можно делить на две части – вестибулярную и оральную. В вестибулярной части альвеолы, на стороне, прилегающей к зубу, ввиду образования щели между зубом и альвеолой благодаря тяге происходит процесс аппозиции, а на противоположной стороне, то есть на стороне оральной части альвеолы, соприкасающейся с корнем, ввиду производимого зубом давления на костную ткань происходит резорбция костной ткани.

    Согласно этой теории происходит, как видно, утолщение вестибулярной части альвеолы и истончение язычной части в местах соприкосновения с зубом, но наружная (десневая) сторона альвеолярного отростка, как с оральной, так и с вестибулярной стороны не изменяется. Между тем, в ортодонтической практике всегда наблюдается перемещение всего участка альвеолярного отростка внутрь или наружу (в зависимости, куда перемещается зуб) почти на такое же расстояние, на которое перемещены зубы. Не только зуб перемещается, но и изменяется положение альвеолярного отростка. Следовательно, теория резорбции и аппозиции в толковании представителей этой точки зрения неудовлетворительна.

    Существует еще другая теория Кингслея и Валькгофа (1890 г.) – теория напряжения челюстных костей, выражающаяся в следующем: компактная часть кости, и тем более, губчатая ее часть, отличаются эластичностью и даже растяжимостью, особенно в молодом возрасте. Как известно, губчатая кость состоит из сплетения костных балочек, в петлях которых содержится костный мозг.

    При применении тяги или давления грубой силы петли изменяют свою конфигурацию, и возникает соответствующее изменение во внутримолекулярном напряжении элементов костной ткани. Возникает разница напряжения в различных участках костной ткани. Этим обусловливается перемещение зубов вместе с альвеолой.

    Если действие силы, деформирующей костную ткань, долго продолжается, то разность внутримолекулярного напряжения постепенно сглаживается и измененная форма всей кости становится стабильной.

    Согласно этой теории на стороне давления кость, вследствие своей эластичности, сжимается и отодвигается в оральном направлении, а вестибулярная часть освобождается от напряжения и тягой, передаваемой через альвеолярные перегородки, вся перемещается вслед за зубами орально.

    Недостаток этой теории – она игнорирует известный фактор генеза костной ткани, который зависит от двух процессов: аппозиции и резорбции.

    Известна еще третья теория Оппенгейма. При перемещении зуба, согласно этой теории, происходит не перемещение альвеолярного отростка целиком вместе с зубом вследствие эластичности кости, а перестройка костной ткани его, благодаря процессам аппозиции и резорбции. Но резорбция и аппозиция происходит не так, как их толкуют представители первой теории.

    Например, при перемещении зуба в оральном направлении, альвеола может быть разделена на две части – вестибулярную и оральную. В каждой из этих частей происходят одновременно и параллельно резорбция и аппозиция. В вестибулярной части на стороне соприкосновения альвеолы с зубом (внутренняя сторона) вследствие отодвигания зуба от альвеолы происходит аппозиция. Резорбция в этой части происходит на наружной (десневой) стороне. Что касается оральной части альвеолы, то в месте соприкосновения с зубом (внутренняя сторона) происходит резорбция, а с наружной (десневой) стороны происходит аппозиция. Таким образом, наблюдается не утолщение вестибулярной части и истончение оральной, а почти равномерное изменение структуры тканей обеих частей в процессе перемещения зуба в оральном или вестибулярном направлении. Вследствие этих процессов перестройки кости из аномалийного положения в нормальное перемещается не только зуб, но и альвеола.

    Установленные Оппенгеймом тканевые изменения при ортодонтическом перемещении зубов в своей основе соответствуют современному представлению по этому вопросу. Однако некоторые указания автора по вопросу о тканевых изменениях в зоне давления и в зоне тяги являются неточными.

    По мнению Д.А. Калвелиса (1964) наличие остеокластов в зонах тяги и остеобластов в зонах давления имеет место в стадии ретенции, когда происходит выравнивание периодонтальной щели, – на поверхности новообразованной кости (зона тяги) рассасываются остеофитические образования, и образуется гладкая стенка альвеолы. На стороне давления (в стадии ретенции) происходит наслаивание кости на резорбированную поверхность стенки лунки, благодаря чему выравнивается альвеолярная стенка, и укрепляются периодонтальные волокна.

    В зависимости от морфологической и функциональной патологии определяются четыре степени тяжести тканевых преобразований пародонта (Д. А. Калвелис, 1961).

    Первая степень характеризуется небольшим повышением давления в периодонте, вследствие чего происходит уравновешенный процесс рассасывания и новообразования альвеолярной стенки, и зуб сохраняет устойчивость. Такие условия создаются в случаях применения малой силы давления.

    Вторая степень характеризуется полным сдавлением периодонта с нарушением кровообращения, когда процесс резорбции в этом участке не может происходить и происходит в участках жизнеспособной ткани (пещеристая резорбция). После резорбирования ущемленного периодонта и альвеолярной стенки происходит полное морфологическое и также функциональное восстановление пародонта.

    Третья степень характеризуется ущемлением пародонта на большом протяжении с нарушением кровообращения, когда в процесс резорбции вовлекаются не только ущемленный периодонт и альвеолярная стенка, но и корень зуба. Если в ходе восстановительных процессов резорбционные лакуны в корне зуба выстилаются цементом и восстанавливается периодонт, то такой конечный исход можно рассматривать как восстановление функциональной способности зуба, но с морфологическими дефектами.

    Четвертая степень тяжести тканевых преобразований характеризуется костным сращением корня зуба со стенкой альвеолы. Механизм образования такого положения обуславливается сдавливанием периодонта на большом участке с полным его ущемлением, когда в процессе резорбции рассасывается не только альвеолярная стенка и ущемленный периодонт, но в значительной мере и твердые ткани зуба до образования каналов в корне зуба. До завершения процесса резорбции одновременно протекают восстановительные процессы. Резорбционные лакуны на корне зуба заполняются не цементом, а костной тканью, и на костно-цементной границе на месте ущемленного периодонта образуются остеоны. В результате таких тканевых преобразований происходит костное сращение корня зуба со стенкой альвеолы.

    Ортодонтия
    Под редакцией проф. В.И. Куцевляка

    Клинические методы диагностики в ортодонтии. Их характеристика, значение при планировании лечения зубочелюстно аномалий

    НазваниеКлинические методы диагностики в ортодонтии. Их характеристика, значение при планировании лечения зубочелюстно аномалий
    АнкорDetskaya stomatologia otvety na voprosy (1).docx
    Дата29.12.2017
    Размер1,95 Mb.
    Формат файла
    Имя файлаortodontia.docx
    ТипДокументы
    #38580
    страница5 из 16
    Каталог

    Варианты профиля лица по классификации А.М. Шварцу
    AM. Шварц определил девять возможных вариантов профиля лица (рис.1 a-и). В зависимости от положения точки Subnasale (Sn) к перпендикуляру Рп различают мезо-, цис-, или трансфронтальное лицо:
    — Мезофронтальное лицо = точка Sn лежит на перпендикуляре к точке Nasion.
    — Цисфронтальное лицо = точка Sn лежит перед перпендикуляром к точке Nasion.
    — Трансфронтальное лицо = точка Sn лежит позади перпендикуляра к точке Nasion.
    При прямом цисфронтальном или трансфронтальном типах лица подбородочная точка Род’ смещена настолько, как и точка Subnasale. Два следующих подтипа профиля лица скошенного «кпереди» или «кзади» различают в зависимости от изменения положения точки Pogonion мягких тканей относительно точки Subnasale каждого из трёх вышеуказанных типов.

    1. Рентгенологический Метод исследования кистей рук по A. Bjork. Роль в планировании ортодонтического лечения

    Телерентгенологическое изучение кистей рук применяют для уточнения степени оссификации в целом и лицевого отдела черепа в частности, определения биологического возраста пациента и окончания периодов активного роста костей в постнатальном периоде развития. Bjork предложил исследовать степень оссификации фаланг пальцев кистей пястья и запястья, эпифизов лучевой и локтевой костей

    Особое внимание обращают на степень минерализации сесамовидной кости, которая располагается в области межфалангового сочленения I пальца в толще сухожилий мышц

    Минерализация сесамовидной кости наступает у девочек в 11,5 лет, у мальчиков – в 12 лет, также в этот период можно установить достаточное развитие фаланг пальцев и всех перечисленных костей. В более раннем периоде сесамовидная кость отсутствует, концевые отделы костей имеют нечеткие контуры. В первом случае периоды активного роста костей окончены и показано применение ортодонтических аппаратов механического типа действия, т.к. кости лица более минеральны, чем органичны. Во втором случае рост и оссификация костей продолжаются. Кости более органичны, чем минеральны, а значит, показано применение функционально действующих ортодонтических аппаратов.

    1. Биоморфологические изменения в зубочелюстной системе при воздействии ортодонтических аппаратов

    Костная ткань благодаря своему строению способна воспринять большую нагрузку, если ее структурные элементы соответствуют направлению функциональной нагрузки. На изменение условий нагрузки костная ткань реагирует перестройкой микроструктур. Скоростьреактивной перестройки костной ткани определяется содержанием воды в костях. С возрастом объем, занимаемый водой, и скорость диффузииионов минеральных солей снижаются. В связи с этимв молодом возрасте перекристаллизация минеральных компонентов, определяющих стабильность новой формы, происходит быстрее.

    С помощью ортодонтическихаппаратов оказывают воздействие на пародонт перемещаемых зубов шовные соединения, височнонижнечелюстные суставы.

    Морфологические изменения пародонта. При перемещении зубов в пародонте возникают зоны сдавления и зоны натяжения тканей. Зоны сдавления и натяжения располагаются в зависимости от места приложения и направления силы, а также от числа и формы корней перемещаемого зуба. При воздействии силы на коронку зуба происходит его наклон, в пришеечной области возникает зона сдавления, в которой периодонтальная щель сужается, с противоположной стороны — зона натяжения. Аналогичная картина, но в противоположных направлениях наблюдается в области верхушки корня зуба.

    В зоне натяжения под влиянием силы, приложенной к зубу, происходит натяжение периодонтальных волокон. Смещение зуба происходит в основном за счет распрямления волокон не более чем на 0,1 мм. Их натяжение приводит к сдавлению проходящих между ними сосудов. Трофические процессы нарушаются

    Сдавление или натяжение тканей должно быть таким, чтобы оно немного превышало капиллярное давление в периодонте, затрудняло ток крови и являлось причиной направленной перестройки формы лунки зуба. А. М. Schwarz(1932) отмечал, что при наклонном перемещении зуба сила давления на него не должна превышать 20 г, а при корпусном — 40—50 г на 1 см2.

    Морфологические изменения шовных соединений. Швы являются своеобразными амортизаторами, воспринимающими и перераспределяющими давление, особенно в области контрфорсов лицевого скелета. Они постоянно перестраиваются при изменении функциональной нагрузки.

    На швы можно оказать два вида воздействия — сжатие и растяжение. Поверхности соединения костей, как правило, таковы, что при любом воздействии возникает множество участков сдавления и натяжения коллагеновых волокон. происходящие при этом морфологические изменения в принципе не отличаются от описанных при сдавлении и натяжении пародонта.

    ‘У^стках сдавления уменьшается просвет кровеносных и лимфатических сосудов, изменяется структура коллагеновых олокон, гибнут нервные окончания. Спустя 2 сут кровообра-шние нормализуется При сдавлении швов наблюдается медленная резорбция кости, так как швы приспособлены противостоять сдавлению; при натяжении, наоборот, построение кости происходит быстрее, так как швы приспособлены к ее построению при натяжении коллагеновых структур. Скорость раскрытия швов зависит от прилагаемой силы, ширины соединительнотканной прослойки и выраженности зубцов.

    Морфологические изменения височно-нижнече-люстных суставов. Височно-нижнечелюстные суставы являются зоной активного роста нижней челюсти. С помощью ортодонтических аппаратов можно сместить нижнюю челюсть в сторону, вверх, вниз, вперед или назад. При этом возникают морфологические изменения в височно-нижнечелюстных суставах. Наиболее часто нижнюю челюсть выдвигают; при этом ее суставные головки перемещаются по скатам суставных бугорков. В начальном периоде ортодонтического лечения заметных изменений не происходит, так как сдавливаются хрящевые пластинки, выстилающие суставные ямки и покрывающие суставные головки. Спустя 5—7 сут в кости суставных бугорков начинаются процессы перестройки. Расширяются кровеносные сосуды, увеличивается число клеточных элементов внутри костмномозго-вых полостей, позднее появляются остеобласты и кость резорби-руется. Перестройка кости происходит не только в участке сдавления суставных бугорков, но и на поверхности суставных головок. Значительные изменения наступают в суставных дисках. В участках, где диск не испытывает давления, он увеличивается в 2—3 раза. При этом хрящевые клетки становятся крупнее и, округляясь, теряют звездчатую форму. Расширяясь, диск заполняет пространство, возникающее в дистальном участке суставов вследствие перемещения суставных головок вперед и вниз. Увеличивается количество синовиальной жидкости. Там, где внутрисуставной диск соединяется с капсулой, разрастаются сосочки синовиальной оболочки, а иногда происходит их сглаживание. В оболочке появляются отчетливо выраженные кровеносные сосуды. В норме этого не происходит.

    Наблюдаются изменения и в мышцах, имеющих непосредственное отношение к суставу. В процесс перестройки вовлекаются участки ветвей нижней челюсти, расположенные ниже шейки суставной головки. После окончания активного перемещения нижней челюсти имевшие место процессы перестройки в суставе постепенно нормализуются.

    Реактивные изменения слизистой оболочки. Через слизистую оболочку полости рта проникают лейкоциты, которые выполняют защитную роль; кроме того, разрушаясь, они выделяют активные ферменты, необходимые для пищеварения. Слизистая оболочка рта содержит большое количество нервных окончаний, составляющих основу рецепторного поля пищеварительного тракта.

    После фиксации ортодонтических аппаратов, прилегающих к слизистой оболочке, повышается слущиваемость эпителиальных клеток на ее поверхности. Подвоздействием ортодонти-ческих аппаратов сдавливаются кровеносные сосуды в подлежащей соединительной ткани, нарушаются трофика эпителиальных клеток, защитные процессы в слизистой оболочке и ферментативное равновесие. Изменяется характер рефлекторных реакции.

    1. Биомеханика перемещения зубов при ортодонтическом лечении. Зависимость скорости перемещения зубов от величины силы, применяемые при ортодонтическом лечении. Теория Оппенгейма и Шварца, Кингелея, Фошара и других авторов. Их практическое значение.

    Различают 3 вида перемещения зубов:

    При горизонтальном перемещении зуба в зависимости от места приложения действующей силы зуб может перемещаться “корпусно” (не изменяя наклона оси) и наклонно-поступательно. При корпусном перемещении зуба зоны тяги и давления выявляются по всей длине корня. Действующая сила при этом приложена на протяжении не менее половины зуба.

    При действии силы в одной точке коронки зуба перемещение его будет наклонно-поступательным. При этом коронка вместе с частью корня наклоняется в направлении действующей силы, а верхушка его движется в противоположном направлении. Наклон зуба происходит вокруг неподвижной точки (точки вращения), положение которой зависит от многих условий, например, от длины корня и коронки, точки приложения силы, анатомических особенностей лунки зуба и др. Вследствие этого образуются не 2, а 4 зоны тканевых изменений, именно две зоны давления и две зоны тяги. В зонах давления остеокласты вызывают резорбцию внутренней стенки альвеолы, что дает возможность зубу перемещаться в определенном направлении. В зонах натяжения, наоборот, отмечается образование новой кости на внутренней стенке альвеолы. Уравновешенность этих процессов исключает подвижность перемещаемых зубов.

    При действии больших сил возникает не только рассасывание альвеолярной кости, но и лакунарная резорбция цемента и дентина. В период резорбции сглаживаются остеофиты, образовавшиеся во время перемещения зуба, благодаря этому выравнивается внутренняя поверхность альвеолы, а периодонтальная щель становится ровной. На стороне давления в стенке альвеолы в этот период имеющиеся лакуны заполняются новообразованной костью, лакуны в цементе – цементоподобной тканью.

    Возможности перемещения неправильно расположенных зубов были известны давно, но механизм происходящих при этом процессов был не известен. При перемещении зубов Фошар окружающих зуб тканях две зоны, а именно: зону давления и зону натяжения. По мнению Флюренса в зоне давления происходит резорбция, а в зоне натяжения – аппозиционный рост костной ткани.

    Благодаря исследованиям Санстедта и Оппенгейма, теория перестройки костной ткани получила дальнейшее развитие. Оппенгейм ставил опыты на молодых обезьянах, строение ЗЧС которых сходно с детским. При небольшом наклоняющем давлении на зуб на стороне давления и на стороне тяги в стенке альвеолы через 40 дней Оппенгейм обнаружил балочки губчатого вещества, ориентированные перпендикулярно к продольной оси зуба. Наличие большого количества остеобластов и остеокластов подтверждало происходящую перестройку костной ткани. Активность перестройки кости на стороне давления была выше, чем на стороне тяги. Было установлено, что на стороне тяги и в зоне давления перестройке подвергается не только альвеола зуба, но весь окружающий альвеолярный отросток. Трудами Санстедта и Оппенгейма установлена зависимость интенсивности перестройки костной ткани от величины применяемой силы. В эксперименте с применением больших сил для перемещения зубов Оппенгейм обнаружил, что на стороне давления периодонт был сдавлен, сосуды повреждены, а на стороне тяги периодонт был растянут, рост новой кости выражен слабо, возникли участки резорбции цемента корня.

    Начиная А.М. Шварц изучал зависимость тканевых преобразований от величины силы, ее продолжительности и точки приложения. Исследователь применил силы 4-х степеней, причем величина силы ортодонтического аппарата сравнивалась с величиной внутрикапиллярного давления (26-28 г/см 2 ):

    Биологические силы, действующие в зубочелюстно-лицевой системе;

    Силы меньше внутрикапиллярного давления – до 20 г/см 2 ;

    Силы большие – до 50 г/см 2 ;

    Чрезмерные силы – более 50 г/см 2 .

    В зависимости от силы и продолжительности действия аппарата было установлено 4 вида тканевых преобразований пародонта:

    Сила I-й степени, приравниваемая к силе давления пальца на десну при массаже, не вызывает никакой реакции пародонта.

    Сила II-й степени сдавливает периодонтальную щель и вызывает нарушение кровообращения. Если сила кратковременна, то возможно восстановление костной ткани. Если же сила продолжительного действия, то возникают процессы резорбции в зоне давления и аппозиции костной ткани в зоне натяжения.

    Сила III-й степени приводит к сдавливанию периодонта и его анемии, что вызывает некротические процессы в костной ткани. При этом после лизиса некротизированной ткани зуб смещается на освободившееся место. При поворном активировании ортодонтического аппарата эти процессы в костной ткани повторяются.

    Сила IV-й степени чрезмерно ущемляет и раздавливает периодонт, возможен разрыв сосудистого пучка и кровоизлияние в области верхушки корня; эти явления необратимы.

    Таким образом, при перемещении зубов необходимо использовать постоянные силы II-й степени, или перемежающиеся силы III-й степени.

    1. Тканевое преобразование в области височно-нижнечелюстного суставов при ортодонтическом лечении

    Тканевые преобразования при расширении верхней челюсти. Аппараты, которыми расширяют зубные ряды, действуют на опорные зубы, через них на альвеолярные отростки и срединный небный шов. Степень тканевых преобразований в этих участках будет зависеть от конструкции аппарата, силы и продолжительности его действия, реактивности организма и возраста пациента. Аппараты будут в первую очередь вызывать тканевые преобразования в пародонте опорных зубов (пародонтальные изменения), и только при продолжительном действии в процесс тканевых преобразований вовлекается небный шов. Вид тканевых преобразований в небном шве будет зависеть от силы воздействия аппарата. При медленном “раскрытии” небного шва по краям его обнаруживается интенсивное костеобразование, которое провоцирует натяжение фиброзных волокон шва. В дальнейшем “раскрытый” шов заполняется плотной костью, приобретая нормальные очертания. Х.К. Каламкаров установил, что при “раскрытии” небного шва происходит не только новообразование кости, но и перестройка направленности трабекул твердого неба они приобретают ориентировку, перпендикулярную направлению небного шва. Быстрое “раскрытие” небного шва с помощью винтового аппарат вызывает разрыв соединительных волокон шва и кровоизлияние. При этом образование новой кости происходит медленно, а после окостенения шов не приобретает нормального вида (Д.А. Калвелис).

    Перестройка височно-нижнечелюстных суставов (ВНЧС) при сагиттальных перемещениях нижней челюсти. Перемещение нижней челюсти в процессе лечения сопровождается перестройкой ВНЧС, которая выражается в резорбции мезиальной стенки суставной впадины и передней части суставной головки. На дистальной поверхности суставной головки происходит новообразование кости.

    При дистальном смещении нижней челюсти изменения в ВНЧС аналогичны, но топография их противоположна: резорбция кости происходит на дистальной стенке суставной впадины и головки, а образование – на мезиальной.

    Таким образом, преобразования в ВНЧС в процессе ортодонтического лечения происходят по тем же законам, что и в пародонте зубов (в зоне давления преобладает резорбция, в зоне тяги – аппозиция) и зависят от силы и длительности действия

    1. Биомеханические процессы, протикающие в парадонте при корректном и некоректном воздействии на зуб внешними силами. Парадонт как функциональная основа зубочелюстной системы ее строение и функция.

    Пародонт- комплекс тканей (десна с надкостницей, кость и периодонт), имеющих генетическую и функциональную общность. Зуб вместе с пародонтом рассматривают как единую функциональную и морфологическую систему, а поражение всех или отдельных элементов пародонта влияет на функцию зуба.

    Десна- часть слизистой оболочки полости рта, непосредственно окружающая зубы. Снаружи десна граничит со слизистой оболочкой, покрывающей альвеолярный отросток челюсти. Десна подразделяется на три части: прикрепленную, свободную и десневые межзубные сосочки.

    Слизистая оболочка выдерживает значительное жевательное давление, способствует формированию пищевого комка, через неё всасываются и выделяются растворы многих лекарственных веществ.

    Зубодесневое соединениевыполняет барьерную функцию

    Альвеолярный отросток- часть верхней или нижней челюсти, отходящая от их тела и содержащая зубы. Резкой границы между телом челюсти и её альвеолярным отростком не существует. Альвеолярный отросток появляется только после прорезывания зубов и почти полностью исчезает с их потерей.

    Периодонт- связка, удерживающая корень зуба в костной альвеоле. Его волокна в виде толстых коллагеновых пучков одним концом вплетаются в цемент, другим – в альвеолярный отросток, образуя несколько групп.

    Цемент покрывает корень зуба от границы эмали до верхушки.

    1. Методы лечения зубочелюстно-лицевых аномалий. Методика серийного последовательного удаления зубов по хотцу. Показания к применению. Ее преимущества и недостатки

    Методы лечения зубочелюстно-лицевых аномалий:

    МиотерапевтическийГимнастика, массаж, электромиостимуляция
    ХирургическийМетод Хотца, компактостеотомия, пластика уздечек, вестибулопластика губ и языка, удаление отдельных зубов, остеопластика;обнажение коронки ретинированного зуба; одномоментный поворот зуба по оси; реплантация, трансплантация зуба
    ОртопедическийВнеротовые системы для тяги (головная шапочка, шейная повязка, лицевая маска, лицевая дуга, подбородочная праща или чашка), эластические и пружинные элементы передачи механического действия
    ПротетическийЗамещение дефектов зубов и зубных дуг
    Ортодонтический аппаратурныйОртодонтические аппараты функционально-действующие, функционально-направляющие, механического и комбинированного действия

    перейти в каталог файлов

    Биомеханика ортодонтического перемещения зубов

    В процессе лечения возникает необходимость перемещать зубы в трех взаимно перпендикулярных направлениях. В связи с анатомическими особенностями зубочелюстной системы нуж­ное давление и тягу можно оказывать в основном на коронку зуба. Его корень, который примерно в 2 раза длиннее коронки, находится в альвеоле. Под воздействием горизонтально направ­ленной силы, приложенной к коронке зуба, происходит его наклон, а не поступательное (корпусное) перемещение.

    Основываясь на третьем законе Ньютона, при конструи­ровании ортодонтического аппарата следует определять на­правление и величину его действующей силы, обозначаемой как активная сила F, а также направление и величину про­тиводействующей силы, обозначаемой как реактивная сила R (рис. Ю.2).

    Рис. Ю.2. Направление активной (F) и реактивной (R) сил и их влияние на поступательное или вращательное перемещение тела. Объяснение в тексте.

    Известно, что любое сложное движение тела по плоскости представляет собой сумму двух простых движений: поступатель­ного, возникающего при совпадении линий действия активной и реактивной сил, и вращательного, возникающего при несов­падении линий действия этих сил. Следует учитывать, что сила характеризуется тремя параметрами — величиной, линией действия и его направлением. Рассмотрим движение тела, вращающегося вокруг неподвижной оси или центра вращения, каким является, например, маховое колесо на неподвижном стержне. Поскольку центр вращения колеса О фиксирован, то при действии активной силы F колесо будет вращаться. Для определения направления вращения колеса из его центра опускают перпендикуляр L на продолжение линии действия активной силы F. Маховое колесо вращается по часовой стрел­ке -М (см. рис. Ю.2, в) или против нее +М (см. рис. 10.2, а). При совпадении линий действия активной силы F и реактив­ной R и их прохождений через центр махового колеса оно вращаться не будет (см. рис. 10.2, б). Вращение колеса произой­дет, если активная сила F, линия действия которой не про­ходит через центр вращения колеса О, вызовет появление пары сил. Эта пара состоит из активной силы F и реактивной R, возникающих в центре вращения колеса О; последняя всегда параллельна силе F, равна ей по величине и направлена в противоположную сторону. Суммарная величина вращающего момента (М), возникающего при данной паре сил, может быть вычислена по формуле:

    “РИ равнозначной ей формуле M=F-L, так как F = R. Из

    следней формулы видно, что величина вращающего момента ^ прямо пропорциональна величине активной силы F и длине

    рпендикуляра L. Следовательно, чем дальше проходит линия

    Рис. 10.3. Механизм воздействия активной силы (Р) на жесткое кли­новидное тело с нефиксированным центром вращения, частично погруженное в густую, вязкую среду. Объяснение в тексте.

    действия силы от центра вращения колеса, т. е. чем больше L, тем больше вращающий момент для той же величины си­лы F.

    А. М. Schwarz (1929) сравнил движение зуба в альвеоле с движением твердого тела в вязкой среде. Опираясь на законы механики и поведение твердого тела в упругой среде (закон Гусса), он математически определил центр вращения пере­мещаемого зуба с учетом длины его корня, а также удален­ности точки приложения одной горизонтальной силы от шейки зуба. По данным А. М. Schwarz, центр вращения перемещае­мого зуба расположен между верхушечной и средней третями корня; иногда он может смещаться в сторону середины корня, но не достигает ее. .

    На местоположение центра вращения перемещаемого одно­корневого зуба влияет форма его корня [КамышеваЛ. И., 1969;

    Schwarz А. М., 1928, 1929; MarkorzA., 1962].

    Рассмотрим механизм воздействия активной силы на жес­ткое клиновидное тело, частично погруженное в густую вязкую среду, с нефиксированным центром вращения. Примером может служить кол, вбитый в землю. На рис. 10.3 представлены воз­можные варианты воздействия активной силы F на такой кол:

    а) только вправо, вращение по часовой стрелке;

    б) вправо и вниз, вращение по часовой стрелке;

    в) вправои вниз, без вращения;

    г) влево и вниз, вращение против часовой стрелки;

    д) вправо и вверх, вращение по часовой стрелке. Результат перемещения кола зависит от направления дей­ствующейсилы, точки ее приложения,положения центравращениякола в почве и противодействующихсил среды, в которой находитсякол. В случаях,иллюстрируемых рисунком,действующаясила направленавправо, но под разными углами. В связи сэтим появляетсякомпонент силы, направленный вниз,который стремится погрузить кол вземлю (см. рис. 10.3, б. в) или направленныйвверх и стремящийся вытянуть кол из земли (см. рис. 10.3, д).Компонент, направленный по вертикали, отсутствует (см.рис. 10.3, а).Согласно принципу вращения махового колеса, кол будет вращатьсяпо часовой стрелке (см. рис. 10.3, а, б, д), против нее (см. рис. 10.3, г) иливращенияне будет (см. рис. 10.3, в). Еслиможно было бы приложитьсилувгоризонтальном направлении через центр вращения, то кол переместился бы поступательно(см. рис. 10.3, е).

    Корень зуба, расположенный в альвеоле,можно сравнить с колом,вбитым в землю.Подобно такому колу, под действием приложеннойсилы зуб может совершать поступательное и вращательное движения.

    На рис. 10.4 схематично представлено действие в дистальном направлении активной силыF на первый постоянный моляр. Центр вращения зубаобычно находится на границе между среднейи апикальной третью корня.В зависимости от его рас­положения и направления активной силы F возможны следу­ющие варианты перемещениямоляра:

    а) сила F направлена перпендикулярновертикальной осизуба,линия ее действияпроходит ниже центраего вра­щения; результат — дистальное перемещениезуба с егодистальнымнаклоном;

    6) силаF направлена дистальнои вверх, линия еедействияпроходитниже центра вращения зуба, результат — ди­стальноеперемещение зуба с дистальнымнаклоном егокоронки и зубоальвеолярным укорочением;

    в) сила F направлена дистально и вверх, линия еедействияпроходитчерез центрвращения зуба, результат — дис­тальноеперемещение зуба с зубоальвеолярным укороче­нием, но без наклона;

    г) сила F направлена дистальнои вверх, линия еедействияпроходит выше центра вращениязуба, результат — ди-стальный наклонкорней зуба с мезиальным наклоном его коронки и зубоальвеолярным укорочением;

    Д) сила F направлена дистальнои вниз, линия ее действия проходит ниже центравращения зуба, результат — ди

    Рис. 10.4. Виды воздействия активной силы F на верхний первый постоянный моляр.

    О— центр вращения зуба; F — активная (действующая) сила; R — реактивная (противодействующая) сила; L — длина перпендикуляра, опущенного из центра вращения зуба на линию дейстия силы F; M — момент вращения (прямыми стрелками обозначено направление силы, вызывающей поступательное пере­мещение зуба, дугообразными — вращательное). Направлению воздействия по часовой стрелке соответствует дистальный наклон зуба, против часовой стрел­ки — мезиальный.

    стальное перемещение зуба с дистальным наклоном его коронки и зубоальвеолярным удлинением;

    е) сила F направлена дистально и перпендикулярно верти­кальной оси зуба, линия ее действия проходит на уровне центра вращения; результат — поступательное перемеще­ние зуба.

    Анализируя представленные на схеме варианты силового воздействия на зуб, можно констатировать, что в зависимости от направления линии действия активной силы F и ее отно­шения к центру вращения зуба он может перемещаться в дистальном направлении с дистальным или мезиальным наклоном коронки, поступательно; одновременно может происходить зубоальвеолярное удлинение или укорочение. Для достижения поступательного (корпусного) перемещения зуба c помощью одной силы необходимо исключить вращательный момент путем максимального смещения центра вращения зуба за его пределы. При показаниях к перемещению корня зуба без значительного смещения его коронки силу нужно приложить в области середины корня. Для предупреждения наклона пере­мещаемого зуба сочетают прямолинейное воздействие на него с воздействием обратной пары сил, т. е. с вращательным воз­действием. Поступательного перемещения зуба достигают при оптимальном соотношении между названными силовыми воз­действиями.

    Не нашли то, что искали? Воспользуйтесь поиском:

    Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: “Что-то тут концом пахнет”. 8801 – | 8337 – или читать все.

    Читайте также:  Насколько опасна скученность зубов, и как исправить дефект
    Ссылка на основную публикацию